Rendu de Fluides

Moteurs de Jeux

Kevin Bollini Geoffrey Mélia

Université Montpellier 2

8 Novembre 2012

Sommaire

- Introduction
- Modélisation
- Rendu
- 4 Conclusions et Perspectives

Plan

- Introduction
 - Généralités
 - Propriétés Fondamentales
 - Approches
- 2 Modélisation
- Rendu
- 4 Conclusions et Perspectives

8 Novembre 2012

Généralité

Généralité

Qu'est ce qu'un "Fluide"?

- Milieu matériel déformable
- Liquides (peu compressibles)
- Gaz (compressibles)

8 Novembre 2012

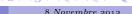
Généralité

Qu'est ce qu'un "Fluide"?

- Milieu matériel déformable
- Liquides (peu compressibles)
- Gaz (compressibles)

Quelles différences avec un solide?

- Propriétés Mécaniques
- Propriétés Optiques
- Modélisations différentes



4 / 26

La rhéologie est l'étude de la déformation et de l'écoulement de la matière sous l'effet d'une contrainte appliquée.

La rhéologie est l'étude de la déformation et de l'écoulement de la matière sous l'effet d'une contrainte appliquée.

Plusieurs types de fluides

- Newtonien
- Non Newtonien

5 / 26

La rhéologie est l'étude de la déformation et de l'écoulement de la matière sous l'effet d'une contrainte appliquée.

Plusieurs types de fluides

- Newtonien
- Non Newtonien

Fluides Newtoniens

- Linéarité entre contraintes et déformations
- Ce facteur donne la viscosité
- Fluides 'classiques' : eau, lait, jus de fruit, miel, huiles, etc.

5 / 26

La rhéologie est l'étude de la déformation et de l'écoulement de la matière sous l'effet d'une contrainte appliquée.

Plusieurs types de fluides

- Newtonien
- Non Newtonien

Fluides Newtoniens

- Linéarité entre contraintes et déformations
- Ce facteur donne la viscosité
- Fluides 'classiques' : eau, lait, jus de fruit, miel, huiles, etc.

Fluides non Newtoniens

- Vitesse de déformation (taux de cisaillement) non directement proportionnelle à la force appliquée
- Sable mouillée, mélange eau/fécule de maïs

$$\frac{\partial (\rho \vec{v})}{\partial t} + \vec{\nabla}.(\rho \vec{v} \otimes \vec{v}) = -\vec{\nabla} p + \vec{\nabla}.\vec{\vec{\tau}} + \rho \vec{f}$$

L'équation de Navier-Stockes permet de décrire le mouvement des fluides newtoniens :

$$\frac{\partial (\rho \vec{v})}{\partial t} + \vec{\nabla}.(\rho \vec{v} \otimes \vec{v}) = -\vec{\nabla} p + \vec{\nabla}.\vec{\vec{\tau}} + \rho \vec{f}$$

t représente le temps

6 / 26

L'équation de Navier-Stockes permet de décrire le mouvement des fluides newtoniens :

$$\frac{\partial(\rho\vec{v})}{\partial t} + \vec{\nabla}.(\rho\vec{v}\otimes\vec{v}) = -\vec{\nabla}p + \vec{\nabla}.\vec{\vec{\tau}} + \rho\vec{f}$$

- t représente le temps
- ullet ho désigne la masse volumique du fluide

6 / 26

L'équation de Navier-Stockes permet de décrire le mouvement des fluides newtoniens :

$$\frac{\partial(\rho\vec{v})}{\partial t} + \vec{\nabla}.(\rho\vec{v}\otimes\vec{v}) = -\vec{\nabla}p + \vec{\nabla}.\vec{\vec{\tau}} + \rho\vec{f}$$

- t représente le temps
- ullet ho désigne la masse volumique du fluide
- ullet désigne la vitesse eulérienne d'une particule fluide

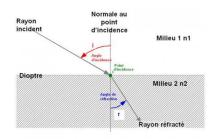
8 Novembre 2012

$$\frac{\partial(\rho\vec{v})}{\partial t} + \vec{\nabla}.(\rho\vec{v}\otimes\vec{v}) = -\vec{\nabla}p + \vec{\nabla}.\vec{\vec{\tau}} + \rho\vec{f}$$

- t représente le temps
- $oldsymbol{\circ}$ ho désigne la masse volumique du fluide
- ullet désigne la vitesse eulérienne d'une particule fluide
- p désigne la pression

$$\frac{\partial(\rho\vec{v})}{\partial t} + \vec{\nabla}.(\rho\vec{v}\otimes\vec{v}) = -\vec{\nabla}p + \vec{\nabla}.\vec{\vec{\tau}} + \rho\vec{f}$$

- t représente le temps
- $oldsymbol{\circ}$ ho désigne la masse volumique du fluide
- ullet désigne la vitesse eulérienne d'une particule fluide
- p désigne la pression
- $\vec{\tau} = (\tau_{i,j})_{i,j}$ est le tenseur des contraintes visqueuses (en Pa)


$$\frac{\partial(\rho\vec{v})}{\partial t} + \vec{\nabla}.(\rho\vec{v}\otimes\vec{v}) = -\vec{\nabla}p + \vec{\nabla}.\vec{\vec{\tau}} + \rho\vec{f}$$

- t représente le temps
- $oldsymbol{\circ}$ ho désigne la masse volumique du fluide
- ullet désigne la vitesse eulérienne d'une particule fluide
- p désigne la pression
- $\vec{\tau} = (\tau_{i,j})_{i,j}$ est le tenseur des contraintes visqueuses (en Pa)
- f f désigne la résultante des forces massiques s'exerçant dans le fluide



Propriétés Optiques

Propriétés optiques

Propriétés Optiques

- Propriétés optiques
- Réflexions

Propriétés Optiques

- Propriétés optiques
- Réflexions
- Spéculaire

Approches

Deux approches pour décrire le mouvement :

8 / 26

Approches

Deux approches pour décrire le mouvement :

Eulérienne

- Définition d'un référentiel commun
- Étude du mouvement par rapport à ce référentiel

8 Novembre 2012

Approches

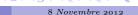
Deux approches pour décrire le mouvement :

Eulérienne

- Définition d'un référentiel commun
- Étude du mouvement par rapport à ce référentiel

Lagrangienne

- On s'accroche à une particule
- On suit ainsi le mouvement de chacune des particules
- En chaque instant, on connait leurs coordonnées



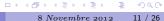
8 Novembre 2012

Plan

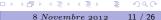
- Modélisation
 - Généralités
 - SPH Modelisation
 - Grid-based Modelisation

Généralités

Deux Approches


- SPH Modelisation
- Grid-based Modelisation

Fonctionnement



Fonctionnement

• Approche lagrangienne (sans maillage)

Fonctionnement

- Approche lagrangienne (sans maillage)
- On divise le fluide en éléments discret : les particules

Fonctionnement

- Approche lagrangienne (sans maillage)
- On divise le fluide en éléments discret : les particules

Avantages

Fonctionnement

- Approche lagrangienne (sans maillage)
- On divise le fluide en éléments discret : les particules

Avantages

Garantit la conservation de la masse

Fonctionnement

- Approche lagrangienne (sans maillage)
- On divise le fluide en éléments discret : les particules

Avantages

- Garantit la conservation de la masse
- Calcul local des interactions (au lieu de systèmes d'équations)

Fonctionnement

- Approche lagrangienne (sans maillage)
- On divise le fluide en éléments discret : les particules

Avantages

- Garantit la conservation de la masse
- Calcul local des interactions (au lieu de systèmes d'équations)
- Surface libre à deux phases (particules et espaces)

Fonctionnement

- Approche lagrangienne (sans maillage)
- On divise le fluide en éléments discret : les particules

Avantages

- Garantit la conservation de la masse
- Calcul local des interactions (au lieu de systèmes d'équations)
- Surface libre à deux phases (particules et espaces)
- Utilisation temps réel (jeu vidéo)

8 Novembre 2012

Fonctionnement

- Approche lagrangienne (sans maillage)
- On divise le fluide en éléments discret : les particules

Avantages

- Garantit la conservation de la masse
- Calcul local des interactions (au lieu de systèmes d'équations)
- Surface libre à deux phases (particules et espaces)
- Utilisation temps réel (jeu vidéo)

Inconvénients

Fonctionnement

- Approche lagrangienne (sans maillage)
- On divise le fluide en éléments discret : les particules

Avantages

- Garantit la conservation de la masse
- Calcul local des interactions (au lieu de systèmes d'équations)
- Surface libre à deux phases (particules et espaces)
- Utilisation temps réel (jeu vidéo)

Inconvénients

Nombre important de particules pour un rendu de qualité

Fonctionnement

- Approche lagrangienne (sans maillage)
- On divise le fluide en éléments discret : les particules

Avantages

- Garantit la conservation de la masse
- Calcul local des interactions (au lieu de systèmes d'équations)
- Surface libre à deux phases (particules et espaces)
- Utilisation temps réel (jeu vidéo)

Inconvénients

- Nombre important de particules pour un rendu de qualité
- Précision moindre qu'un système à maillage

Fonctionnement

Fonctionnement

• Approche Euclidienne : maillage de la scène

Fonctionnement

- Approche Euclidienne : maillage de la scène
- On regarde chaque élément du maillage

Fonctionnement

- Approche Euclidienne : maillage de la scène
- On regarde chaque élément du maillage

Avantages

Fonctionnement

- Approche Euclidienne : maillage de la scène
- On regarde chaque élément du maillage

Avantages

• Niveau de détails important

Fonctionnement

- Approche Euclidienne : maillage de la scène
- On regarde chaque élément du maillage

Avantages

- Niveau de détails important
- Facilement adapter le niveau de détails

8 Novembre 2012

Fonctionnement

- Approche Euclidienne : maillage de la scène
- On regarde chaque élément du maillage

Avantages

- Niveau de détails important
- Facilement adapter le niveau de détails

Inconvénients

Fonctionnement

- Approche Euclidienne : maillage de la scène
- On regarde chaque élément du maillage

Avantages

- Niveau de détails important
- Facilement adapter le niveau de détails

Inconvénients

Temps de calcul important

Fonctionnement

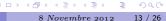
- Approche Euclidienne : maillage de la scène
- On regarde chaque élément du maillage

Avantages

- Niveau de détails important
- Facilement adapter le niveau de détails

Inconvénients

- Temps de calcul important
- Calculs supplémentaires pour vérifier la conservation de la masse



12 / 26

Fonctionnement

Fonctionnement

Modélisation 2,5D

Fonctionnement

- Modélisation 2,5D
- "Tranche" grille de voxels

Fonctionnement

- Modélisation 2,5D
- "Tranche" grille de voxels

Avantages

13 / 26

Fonctionnement

- Modélisation 2,5D
- "Tranche" grille de voxels

Avantages

Rendu Réaliste

Fonctionnement

- Modélisation 2,5D
- "Tranche" grille de voxels

Avantages

- Rendu Réaliste
- Temps de calcul en 2D

Fonctionnement

- Modélisation 2,5D
- "Tranche" grille de voxels

Avantages

- Rendu Réaliste
- Temps de calcul en 2D

Inconvénients

13 / 26

Fonctionnement

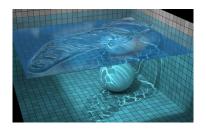
- Modélisation 2,5D
- "Tranche" grille de voxels

Avantages

- Rendu Réaliste
- Temps de calcul en 2D

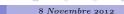
Inconvénients

Limités aux surfaces


8 Novembre 2012

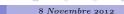
• Basé sur 2,5D

- Basé sur 2,5D
- Exemple



Plan

- Introduction
- 2 Modélisation
- Rendu
 - Généralités
 - Géometrie
 - Réflexions
- 4 Conclusions et Perspectives



Généralités

Plusieurs approches pour le rendu

- Metaballs
- Marching Cube
- Ray-tracing

Métaballs

Metaballs

- Objets mous, aussi appelés Blob (Blinn Objects)
- Adapté au modélisation de particules

Métaballs

Metaballs

- Objets mous, aussi appelés Blob (Blinn Objects)
- Adapté au modélisation de particules

Interaction possible entre les balls :

- influence sur le déplacement
- modification de la forme : jusqu'à pouvoir fusionner

Métaballs

Metaballs

- Objets mous, aussi appelés Blob (Blinn Objects)
- Adapté au modélisation de particules

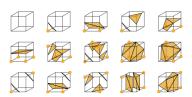
Interaction possible entre les balls :

- influence sur le déplacement
- modification de la forme : jusqu'à pouvoir fusionner

Marching Cube

Marching Cube

- Algorithme d'extraction de surface
- Adapté au rendu de heighfield

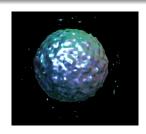

Marching Cube

Marching Cube

- Algorithme d'extraction de surface
- Adapté au rendu de heighfield

Fonctionement

- On découpe l'espace en le parcourant par "cube"
- On approxime un polygone à tracer dans ce cube par rapport à la surface


Marching Cube

Marching Cube

- Algorithme d'extraction de surface
- Adapté au rendu de heighfield

Fonctionement

- On découpe l'espace en le parcourant par "cube"
- On approxime un polygone à tracer dans ce cube par rapport à la surface

Ray-Tracing

Ray-Tracing

- Technique de rendu fidèle à la physique
- Très lourde en terme de ressource

8 Novembre 2012

Ray-Tracing

Ray-Tracing

- Technique de rendu fidèle à la physique
- Très lourde en terme de ressource

Fonctionement

- On tire un rayon partant de la camera pour chaque pixel de l'image
- On colore alors le pixel en fonction du premier objet qu'il heurte
- Cette coloration déprend des propriétés physique de l'objet rencontré

8 Novembre 2012

Ray-Tracing

Ray-Tracing

- Technique de rendu fidèle à la physique
- Très lourde en terme de ressource

Fonctionement

- On tire un rayon partant de la camera pour chaque pixel de l'image
- On colore alors le pixel en fonction du premier objet qu'il heurte
- Cette coloration déprend des propriétés physique de l'objet rencontré

Cubemaps

Fonctionnement

• Cube d'images, regroupant les textures entourant un objet

Cubemaps

Fonctionnement

• Cube d'images, regroupant les textures entourant un objet

Avantages

- Possibilité de pré-calculer
- Rapide

Cubemaps

Fonctionnement

• Cube d'images, regroupant les textures entourant un objet

Avantages

- Possibilité de pré-calculer
- Rapide

inconvénients

• Peu efficace pour les réflexions "locale"

Planars mirrors

Fonctionnement

• Exploite la "stencil reflection"

21 / 26

Planars mirrors

Fonctionnement

• Exploite la "stencil reflection"

Avantages

- Résultat convainquant à l'oeil
- Simple à implémenter

Planars mirrors

Fonctionnement

• Exploite la "stencil reflection"

Avantages

- Résultat convainquant à l'oeil
- Simple à implémenter

inconvénients

- Résultat non conformes à la physique
- Limité au surface plane

Distorsions

Distorsions

Probleme

- L'eau n'est pas une surface parfaitement plane
- Les reflexions ne doivent donc pas non plus l'être

Distorsions

Probleme

- L'eau n'est pas une surface parfaitement plane
- Les reflexions ne doivent donc pas non plus l'être

Approximation

- Moduler la position x et y de chaque élément du fluide avant le calcul
- On utilise alors sa normale
- P.x = d*N.x et P.y = d*N.y, avec d facteur de distorsion

Plan

- Introduction
- 2 Modélisation
- 3 Rendu
- 4 Conclusions et Perspectives
 - Conclusions
 - Perspectives
 - Références

8 Novembre 2012

Conclusions

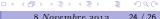
Conclusions

Synthèse

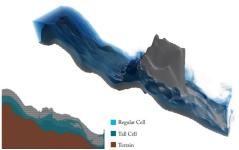
- Rendus convainquants
- Problème ouvert

24 / 26

Conclusions


Synthèse

- Rendus convainquants
- Problème ouvert


Limites

• Difficilement fidèles aux lois de la physique en temps réel

Perspectives

Tall Cell, un hybride heightfield/grid-based

8 Novembre 2012

Références

Ressources Web:

- http.developer.nvidia.com
- www.irit.fr
- www.sciences.univ-nantes.fr
- www.gamedev.net
- ensiwiki.ensimag.fr
- wikipedia.org

Articles, thèses et revues scientifiques :

- Real-Time Eulerian Water Simulation Using a Restricted Tall Cell Grid,
 [N.Chentanez, M.Muller ,NVIDIA PhysX Research, 2010]
- Fitted BVH for Fast Raytracing of Metaballs,
 [Olivier Gourmel1 et al. IRIT-VORTEX LIGUM, 2010]

